Un químico de la RUDN ha propuesto un nuevo catalizador para la síntesis de combustibles

Un químico de la RUDN ha propuesto un nuevo catalizador para la síntesis de combustibles

Un químico de la RUDN ha sintetizado un catalizador fundamentalmente nuevo para la fotooxidación del ácido fórmico, que se considera la fuente más prometedora de hidrógeno para las celdas de combustible. El catalizador de óxido de titanio amorfo es una nueva herramienta para transformar el ácido fórmico. Permitirá en el futuro abandonar los catalizadores tradicionales costosos basados ​​en paladio, platino y rutenio.

El desarrollo de la energía del hidrógeno es imposible sin métodos del almacenamiento seguro y la generación de hidrógeno. El ácido fórmico es una fuente no tóxica y altamente estable de hidrógeno, se liberan H2 y CO2 durante la descomposición del ácido bajo irradiadiación en las nanopartículas del catalizador, cuyo papel desempeñan los compuestos de platino, paladio y otros metales caros. Los investigadores decidieron comprobar qué productos de la fotooxidación de ácido fórmico se obtendrían usando un óxido de titanio amorfo en capas mucho más barato como catalizador.

El profesor Rafael Luque del Instituto Conjunto de Investigación Química de la Universidad RUDN y sus colegas de Irán, España, China y Corea del Sur sintetizaron un óxido de titanio en capas de catalizador basado en una matriz de organosilicato. Inicialmente, los imvestigadores obtuvieron material mesoporoso (2–50 nm), en el que habían presentes grupos diméricos de puente del compuesto orgánico de viológeno. Luego introdujeron un precursor — butilato de titanio — en la matriz, seguido de secado del catalizador a 60°C para convertirlo en óxido de titanio amorfo.

Los investigadores llevaron a cabo la reacción de oxidación del ácido fórmico en diversas condiciones, a diferentes temperaturas (de 25 a 60°C) y una cantidad diferente de catalizador del óxido de titanio amorfo (de 5 a 20 mg), utilizando varios disolventes (agua, etanol, metanol y otros). Los resultados de los experimentos mostraron que la reacción se desarrollaba más rápidamente bajo irradiación ultravioleta, en agua y a temperatura ambiente con la producción de solo CO2 y H2O. No se detectó hidrógeno en los productos y otro producto de oxidación: el monóxido de carbono, que envenena cualquier catalizador de fotooxidación. La formación de tales productos está asociada con la estructura no cristalina del catalizador. En el estudio, los autores han propuesto un mecanismo del proceso fotooxidativo y han descrito etapas elementales.

Los autores también han encontrado que el viológeno mejoraba la calidad del catalizador, porque genera electrones en la fotocatálisis y, por lo tanto, aumenta la vida útil del catalizador. El catalizador se puede reciclar y reutilizar fácilmente en al menos cuatro ciclos sin pérdida aparente de actividad.

Los científicos han contribuido al desarrollo de la química fundamental al estudiar un mecanismo nuevo para la transformación del ácido fórmico. Los resultados de este estudio permitirán en el futuro minimizar riesgos y costos en el uso práctico de este tipo de catalizador en desarrollos nuevos.

El artículo fue publicado en la revista ChemCatChem.

Ciencia
15 Mar
El químico RUDN creó un catalizador para oxidar el ciclohexano de manera más eficiente

El químico RUDN, junto con colegas de Irán y España, creó un catalizador a base de paladio y níquel para oxidar el ciclogesano para producir ácido adípico, que se usa para producir productos de limpieza, colorantes alimentarios y otras sustancias. El nuevo catalizador permitió duplicar el consumo de ciclohexano.

Ciencia
07 Mar
Instituto de Investigación Cientìfica de Medicina Molecular y Celular de la RUDN — Ganador de la Megabeca del Fondo Científico Ruso por 128 millones de rublos

En general a nivel nacional hay 3 ganadores, la RUDN es uno de ellos. El Instituto de Investigación Científica de Medicina Molecular y Celular del Instituto de Medicina de la RUDN se convertirá en la base clínica en el campo de la investigación genética para el tratamiento de Sarcomas de tejidos blandos. El proyecto está diseñado para 4 años.

Ciencia
21 Feb
Químicoy es nuestronuevo objetivo para el tratamiento de los efectos neurodegenerávicos de los niveles elevados de glucosa

Unquímico de RUDN y MSU ha identificadoycómo la composición de lasmoléculas de señalización de oxilitina en el cerebro cambia con el contenido elevado de glucosa. Los resultados ayudarán a crear nuevos medicamentos para tratar la epilepsia y otras enfermedades neurodegenerativas que surgen de la hiperglucemia.