Un edafólogo de la RUDN determinó que los metales pesados debilitan 3 veces a las enzimas del suelo

Un edafólogo de la RUDN determinó que los metales pesados debilitan 3 veces a las enzimas del suelo

Un edafólogo de la RUDN, junto con colegas de Gran Bretaña, Venezuela, Alemania y Chile, encontraron que los metales pesados ​​inhiben la actividad de las enzimas en el suelo de 3 a 3,5 veces. En primer lugar, se ven afectadas las enzimas responsables del ciclo del carbono y el azufre. Estos datos ayudarán a utilizar y fertilizar de manera más eficiente los suelos agrícolas.

Las enzimas del suelo son sustancias que aceleran las reacciones químicas en los suelos. Regulan el metabolismo celular de los organismos que viven en la tierra, participan en la descomposición de la materia orgánica y forman humus. Cuanto más activas sean las enzimas del suelo, mejor será la calidad y fertilidad del suelo. Los metales pesados ​​como el plomo, zinc, cadmio, cobre y arsénico reducen la capacidad de las enzimas para acelerar las reacciones químicas. Por tanto, los metales pesados ​​interrumpen el ciclo de los elementos químicos.

El edafólogo de la RUDN, Yakov Kuzyakov, junto con colegas de Gran Bretaña, Venezuela, Alemania y Chile, analizaron 46 trabajos sobre el efecto de los metales pesados ​​en las enzimas del suelo. Los autores seleccionaron seis enzimas y las dividieron en grupos según el ciclo biogeoquímico al que afectaron. Por ejemplo, la enzima arilsulfatasa acelera la interacción entre los ácidos que contienen azufre y el agua, por ende, está asociada con el ciclo biogeoquímico del azufre. El resto de las enzimas, bajo el mismo principio, intervienen en los ciclos del carbono, nitrógeno o fósforo.

Los edafólogos compararon la actividad de las enzimas en suelos sanos y contaminados con metales pesados. Las enzimas intracelulares (presentes en las células de las raíces y los microbios), que están asociadas con el ciclo del carbono y el azufre, resultaron ser las más vulnerables a la contaminación con metales pesados. Esto puede deberse al hecho de que las enzimas extracelulares se fijan en materiales arcillosos y materia orgánica, por tal motivo, son más estables que los intracelulares.

«Las enzimas extracelulares son más resistentes debido al complejo organomineral, que las estabiliza en el suelo, y del que no pueden presumir las intracelulares. Las enzimas de los ciclos de nitrógeno y fósforo mostraron niveles medios y bajos de disminución en la actividad, ya que son predominantemente extracelulares», explicó Yakov Kuzyakov, Doctor en Ciencias Biológicas, director del Centro de Modelado Matemático y Diseño de Ecosistemas Sostenibles de la RUDN.

Las enzimas responsables de los procesos de intercambio gaseoso, glucólisis y fermentación — arilsulfatasa y deshidrogenasa — resultaron ser las más sensibles en suelos contaminados con metales pesados, su actividad disminuye en un 64% y 72%, respectivamente, es decir, entre 3 y 3,5 veces. Para disminuir la actividad de algunas enzimas (beta-glucosidasa, catalasa), fue suficiente incluso una baja concentración de metales pesados​​ (hasta 200 mg por 1 kg). Por el contrario, la enzima ureasa, que es importante para el ciclo del nitrógeno, resultó ser sensible a la concentración de metales: la disminución de su actividad varía del 10% con baja contaminación al 70% con contaminación extrema. Es importante destacar que la actividad de las enzimas fosfatasas ácidas aumenta a bajas concentraciones de cadmio y cobre.

«El estudio ayuda a comprender mejor los process que conducen a la degradación de los sistemas del suelo bajo la influencia de la contaminación por metales. Los resultados obtenidos pueden ayudar en el desarrollo de nuevos métodos para la restauración de suelos contaminados con metales pesados​​», agregó Yakov Kuzyakov de la RUDN.

En el estudio participaron científicos de la Universidad de La Frontera (Chile), el Instituto James Hutton (Gran Bretaña), el Instituto Venezolano de Investigaciones Científicas, la Universidad de Gotinga (Alemania) y la Universidad Federal de Kazán (Rusia).

Los resultados fueron publicados en la revista Science of the Total Environment.

Ciencia
22 Jul
Matemática de RUDN University construyó un modelo de propagación de la COVID-19 que muestra cómo la vacunación afecta el curso de la pandemia

Unos matemáticos de RUDN University han modelado la propagación de la COVID-19 basándose en dos modelos de regresión matemática. Los matemáticos dividieron los países en tres grupos según la tasa de infección y las condiciones climáticas, y encontraron una aproximación matemática adecuada para cada uno de ellos. Basándose en el modelo, los matemáticos predijeron oleadas posteriores. El pronóstico resultó ser exacto en países donde no se ha adoptado la vacunación masiva.

Ciencia
20 Jul
Un genetista de RUDN University descubrió la proteína de las bifidobacterias que es capaz de aliviar la inflamación producida por COVID-19 y otras enfermedades

Un genetista de RUDN University ha demostrado cómo las bacterias intestinales del género Bifidobacterium afectan el proceso inflamatorio. Resulta que la proteína de superficie de las bifidobacterias puede detener la inflamación incontrolada innecesaria que ocurre, por ejemplo, en casos de COVID-19. Un fragmento de esta proteína se puede utilizar como agente antiinflamatorio en el tratamiento de la infección por coronavirus y otras enfermedades.

Ciencia
05 Jul
Catedrático de RUDN University determinó los beneficios de ingerir magnesio durante el embarazo y trastornos hormonales

Un catedrático de nutrición de RUDN University, junto con colegas de Francia, demostró que ingerir magnesio y vitamina B6 ayuda a combatir las consecuencias de la deficiencia de magnesio durante el embarazo y enfermedades hormonales en las mujeres. En cuatro semanas, los síntomas se vuelven menos pronunciados, la calidad de vida mejora y se reduce el riesgo de aborto espontáneo. Los resultados de la investigación fueron publicados en Scientific Reports.