Biofísicos de la Universidad Estatal de Moscú y RUDN University modelaron el efecto de los antisépticos sobre una membrana bacteriana

Biofísicos de la Universidad Estatal de Moscú y RUDN University modelaron el efecto de los antisépticos sobre una membrana bacteriana

Biofísicos de las principales instituciones científicas y educativas de Rusia, entre ellas la Universidad Estatal de Moscú, RUDN University, y el Centro Científico y Clínico Federal de Medicina Física y Química de la Agencia Federal Médica-Biológica, construyeron un modelo computacional que muestra cómo los antisépticos con partículas cargadas afectan a la membrana bacteriana. Los científicos concluyeron que ideas previas sobre el mecanismo de acción de los antisépticos no son del todo correctas: los antisépticos por sí solos no destruyen la membrana bacteriana, solo causan cambios en la estructura de tal membrana. Esto debilita a la bacteria y causa su muerte bajo la influencia de factores externos.

Los antisépticos son fármacos que alteran los procesos internos o las estructuras externas de los patógenos y, por lo tanto, causan su muerte. Por ejemplo, el alcohol descompone importantes componentes básicos y elementos reguladores de bacterias y virus, y algunos antisépticos destruyen la integridad de la membrana bacteriana. Los antisépticos son efectivos contra una amplia variedad de patógenos, pero su mecanismo de acción específico aún no se ha estudiado en detalle. Solo se conocen características generales, por ejemplo, que el daño en la membrana bacteriana se debe a la presencia de partículas cargadas en las moléculas antisépticas. Por lo tanto, unos biofísicos crearon un modelo computacional de una membrana bacteriana y descubrieron cómo los antisépticos destruyen las bacterias. Los resultados ayudarán a hacer frente a la resistencia a los antisépticos.

«Una serie de patógenos, especialmente los causantes de infecciones nosocomiales son resistentes a los antisépticos. Para el uso y desarrollo eficaz de antisépticos es vital comprender los fundamentos físicos de la interacción de antisépticos con los microorganismos», expresó Ilya Kovalenko, Doctor en Ciencias Físico-Matemáticas, programa 5-100 RUDN University.

Los biofísicos construyeron un modelo de membrana bacteriana, donde «colocaron» moléculas de cuatro antisépticos diferentes: miramistin, clorhexidina, picloxidina y octenidina. Estos antisépticos son del grupo de los catiónicos, es decir, sus moléculas tienen carga positiva. Se prevé que la carga es la que destruye la membrana bacteriana. Sin embargo, para sorpresa de los investigadores, los antisépticos solo cambiaron ligeramente la estructura de la membrana, pero no causaron daño. La destrucción de la membrana no se produjo incluso con un aumento en la concentración del antiséptico de 1:24 a 1:4 en relación con la cantidad de lípidos de la membrana.

La destrucción de la membrana ocurrió cuando los biofísicos agregaron al modelo un campo eléctrico externo de 150 milivoltios por nanómetro. La membrana cambió, se formaron poros alrededor de las moléculas antisépticas, luego el agua penetró en estos orificios inicialmente pequeños, de esta forma los expandió y «rompió» la membrana. Este efecto fue posible gracias a que cerca del antiséptico de carga positiva la membrana se tornó más delgada, es decir, las moléculas de la membrana sin carga tendían a apartarse del antiséptico. La irregularidad de la membrana la hizo más vulnerable a los factores externos, lo que finalmente causó la muerte de la célula.

«Hemos estudiado la interacción de varios antisépticos con un modelo de membrana bacteriana y hemos descubierto que el factor clave en la formación de poros es el reordenamiento de la membrana en presencia de un campo eléctrico, lo cual es obligatorio. Esperamos que el modelo obtenido ayude a predecir el efecto de antisépticos conocidos y recientemente descubiertos sobre diferentes microorganismos», dijo Ilya Kovalenko, Doctor en Ciencias Físico-Matemáticas, programa 5-100 RUDN University.

 Los resultados fueron publicados en The Journal of Physical Chemistry.

Ciencia
08 Oct
Físico de RUDN University simplificó la teoría de Einstein-Lovelock sobre los agujeros negros

Tomando en cuenta correcciones cuánticas, la teoría de Einstein-Lovelock describe los agujeros negros mediante una ecuación que contiene un número infinito de términos. Un físico de RUDN University demostró que la geometría de un agujero negro de mencionada teoría es representable en una forma compacta y solo un pequeño número de términos son suficientes para describir los valores observados. Esto ayudará a los investigadores a estudiar los agujeros negros usando teorías con correcciones cuánticas en las ecuaciones de Einstein.

Ciencia
04 Oct
Lingüista de RUDN University descubrió que las consonantes aspiradas pueden contribuir a la propagación de la COVID-19

Un lingüista de RUDN University encontró que el número de casos de COVID-19 puede estar asociado con la presencia de consonantes aspiradas en el idioma principal del país. Estos datos ayudarán a modelar con mayor precisión la propagación de la infección por coronavirus.

Ciencia
23 Sep
Investigadores de RUDN University han afirmado que los metales tóxicos en el organismo de los estudiantes pueden afectar su salud y rendimiento

Un grupo de médicos y ecólogos de RUDN University han medido la concentración de metales pesados ​​en el organismo de estudiantes universitarios de primer año de diferentes regiones del mundo. El cribado permitió rastrear la relación entre la región de residencia y el nivel de metales tóxicos en el organismo. Los investigadores sugirieron que el aumento de los niveles de metales pesados ​​en el organismo de estudiantes de África y América Latina podría afectar negativamente su salud y rendimiento.