Nikol’skii Alexander Alexandrovich
Nikol’skii Alexander Alexandrovich
Doctor en Ciencias Químicas, Profesor Titular
Profesor Titular del Departamento de Ecología de Sistemas,

“No te preocupes por lo innecesario” (la interpretación de Sirah).

1962

Se le otorgó la Insignia de “Sobresaliente en la construcción militar” del Ministerio de Defensa de la URSS.

1967

Se graduó en el Departamento de Zoología de Vertebrados de la Facultad de Biología, la MGU (la Universidad Estatal de Moscú) “M.V. Lomonosov”.

1971

Bajo la dirección del Profesor Titular N.P. Naumov en el Departamento de Zoología de Vertebrados de la MGU “M.V. Lomonosov”, defendió su tesis de candidato a doctor sobre el tema de la “Señalización sonora distante de los roedores de día en los espacios abiertos” en la MGU “M.V. Lomonosov”.

1982

Defendió su tesis doctoral sobre el tema de “Señales sonoras de los mamíferos en el proceso evolutivo” en la MGU “M.V. Lomonosov”.

1970 ‒ 1989

Trabajó en el Departamento de Zoología de Vertebrados de la Facultad de Biología de la MGU “M.V. Lomonosov” en las posiciones de colaborador científico adjunto, principal y líder.

1989

Fue condecorado con el Diploma de Honor de la Sociedad de Experimentadores de la Naturaleza de Moscú por el libro de Nikol’skii A.A., Frommolt K.-Kh. “La actividad sonora del lobo”, M.: Editorial de la MGU, 1989, 126 pag.

1989 ‒ 1992

Jefe de la Dirección Principal de Asuntos de Reserva del Goskompriroda (el Ministerio de Recursos Naturales) de la URSS.

Diputado del Pueblo de la URSS de parte de las sociedades y asociaciones científicas, miembro del Comité de Ecología.

1990 ‒ 1992

Líder regional de la Región de la URSS (la Eurasia del Norte) de la Comisión de Áreas Especialmente Protegidas adjunta a la Unión Internacional para la Conservación de la Naturaleza (UICN).

De 1990 hasta el presente

Miembro de la Comisión de Áreas Especialmente Protegidas adjunta a la Unión Internacional para la Conservación de la Naturaleza (UICN).

De 1992 hasta el presente

Profesor Titular del Departamento de Ecología de Sistemas de la Facultad de Ecología de la Universidad Rusa de la Amistad de los Pueblos.

1995

Se le otorgó la Medalla de Oro del Zoológico de la c. Innsbruck (Austria) por su contribución al estudio de los mamíferos de montaña.

2007

Recibió una carta de agradecimiento del Ministerio de Recursos de la Federación de Rusia por su contribución al desarrollo de la gestión de áreas vedadas.

2017

Fue galardonado con la Orden de Vernadskiy de la Fundación de Vernadskiy por su contribución a la ecología.

Docencia
Es desarrollador de los cursos de autor de “Historia de la Ecología” y “Ecología evolutiva” para la Facultad de Ecología de la RUDN. 
Imparte los cursos para los estudiantes de bachillerato:

  • “Introducción a la especialidad” (la dirección de “Ecología y la Gestión de los Recursos Naturales”); 
  • “El desarrollo sostenible” (las direcciones de “Ecología y la Gestión de los Recursos Naturales”, “Los procesos de ahorro de energía y recursos en la tecnología química, la petroquímica y la biotecnología).

Para los estudiantes de la magistratura el curso de 

  • “Problemas modernos de la ecología y la gestión de los recursos naturales” (las direcciones de “Economía de la Gestión de los Recursos Naturales”, “El peritaje de la seguridad ecológica de la gestión de los recursos naturales”, “La gestión de los recursos naturales” (en el marco de la UOCSh (la Universidad de la Organización de Cooperación de Shanghai), “La gestión racional de los recursos naturales”, “El reciclaje de residuos de la producción y el consumo”).

Ciencia

Se ha recopilado la fonoteca de señales sonoras de mamíferos, grabadas en las condiciones de expedición de campo en las vastas extensiones de Rusia, el extranjero cercano y lejano. El análisis de esta colección única permitió explorar la especificidad de especie de la actividad vocal de los mamíferos, la variabilidad geográfica y la estructura acústica fina de las señales sonoras, a través de la cual los animales codifican la información.
Fueron publicados más de 200 trabajos, entre ellos 4 monografías:

  • Las señales sonoras de los mamíferos en el proceso evolutivo. La Academia de Ciencias de la URSS, la Sociedad de Experimentadores de la Naturaleza de Moscú. M., 1984, 201 pag.
  • Frommolt K.-Kh. La actividad sonora del lobo. M.: Editorial de la MGU, 1989, 126 pag.
  • La bioacústica ecológica de los mamíferos. M.: Editorial de la MGU, 1992, 120 pag.
  • Las grandes ideas de los grandes ecologistas: la historia de los conceptos clave en la ecología. M.: Editorial "Geos", 2014, 190 pag.

Intereses Científicos

  • Los factores ambientales clave y los mecanismos de realización del nicho ecológico por las especies de mamíferos. 
  • La estructura de las poblaciones.
  • El campo de señalización biológico, cuyo estudio da una idea de los mecanismos comunicativos de la organización espacial de los ecosistemas.
  • La comunicación acústica de los mamíferos como objeto modelo para el estudio de los procesos comunicativos intraespecíficos. Gracias a la descripción cuantitativa de los parámetros acústicos de las señales sonoras de los mamíferos, fue posible distinguir dos funciones básicas: las determinadas genética- y ecológicamente. Gracias a la primera, los animales implementan el acervo genético de la población, y gracias a la segunda, el nicho ecológico de la especie.
  • Los aspectos humanitarios de la protección del medio ambiente.
Сурки, как и многие другие обитатели открытых пространств, стоя у норы, сообщают соседям о появлении опасности посредством звукового предупреждающего об опасности сигнала. Нередко они продолжают кричать, уйдя в нору. При этом в норе тембр звука сильно меняется. В настоящей работе впервые исследован один из возможных механизмов, облегчающих распространение сигнала в норах.
The idea of ecological inheritance as a specific mechanism of information transmission from one generation to another in the organic world belongs to the outstanding biologist Prof. N.P. Naumov. Information in the signal field is encoded in stable elements, or traces of life activities left by many animal generations. In the aggregate, they form a matrix of stable elements, which is a material information carrier that governs the pattern of animal behavior in the space of biogeocenosis. As a result, every new generation follows (inherits) the trajectory of territory use by preceding generations, which is confirmed by observations on marked animals. The ability to distinguish from the background these stable elements carrying species_specific information and adequately respond to it is apparently inherited genetically, as is the ability of animals for learning and imitation. Ecological inheritance are based on the genetic inheritance of abilities: the ability to adequately respond to stable elements of the signal field
The main propositions of the biological signaling field concept suggested by the author of concept N.P. Naumov and his followers are discussed in this review based on the example of mammals. It has been shown that the development of this concept over the last 30 years has been based on its fundamental proposition. The main idea is that, from generation to generation, mammals leave traces of their life activity at landscape objects in a biogeocenosis space and form a matrix of stable elements, i.e., a system of attractors, which are objects that attract attention from animals and their usage of a territory with all its resources. The stable elements establish a visual-olfactory image of the territory, which influences the trajectory of each new generation of mammals. It has been suggested that, because it is similar to biological productivity and species diversity, the field of biological signaling field has consistent stages of ecological succession. Although this concept has not become widespread, in recent years, studies based on its fundamental propositions have been published regularly. A necessary condition of the further successful development of the concept is the establishment of new research methods, including the simulation of the processes of the formation of a matrix of stable elements under experimental conditions.
In Eurasia, the areas of eight out of nine marmot species are completely or partly located within an epi-platformal orogeny area. Epi-platformal orogeny is the process of mountain building on the territory of smoothed relief, which proceeded in a platform mode for a long time. In Eurasia, the area of epi-platformal orogeny includes the Hindu Kush, Tan Shan, Pamir, Kunlun, Nan Shan, Qinling, Altai, and Sayan mountains; the Baikal region, Transbaikalia, and the Stanovoy Range. Formation of the contemporary epi-platformal areas started in the late Oligocene or later and continues till now. The concept of geographic speciation suggests that, at the platform (plain) stage of relief formation, building the geographic barriers was insufficient. First, this promoted panmixia and prevented the divergence of the founder population and; second, the formation of the Marmot genus area was accompanied by a relatively rapid and wide spread of marmots. In contrast, intense formation of geographic barriers in the active phase of orogeny weakened panmixia; division of the founder population into many sites led to genetic disintegration of the population.
The temperature regime of hibernation has been studied in six ground squirrel species from 13 geographic populations living beyond the permafrost zone. It is shown that hibernation usually takes place at low above-zero temperatures and that the least deep burrows are found in the zone of subzero monthly temperatures. Populations have been found that inhabit areas where monthly temperatures during the hibernation period fall below zero in almost the whole range of depths at which nest chambers are located.
Before hibernation, steppe marmots (Marmota bobak Muller 1776) close their burrows to prevent convection transfer of heat to the inside of the burrow. As a result, the temperature inside the burrow differs only slightly from that of the surrounding soil. Using data on soil temperature, I described the temperature regime of steppe marmot burrows (depth from 140 to 450 cm) during hibernation (from August to April), within the species and subspecies ranges. Taking into account the total soil depth of the hibernation chamber and the dates for the beginning and end of hibernation, the steppe marmot enters hibernation at a temperature of 8-16 °C, and ends hibernation at a temperature of 2-4 °C. The hibernation temperature regime differs significantly between the subspecies. M. b. bobak winters at a temperature of 3-4 °C higher than M. b. schaganensis. In the range of M. b. schaganensis marmots start hibernation 1 to 2 months earlier than in the range of M. b. bobak. The cause of subspecies differences in dates of onset of hibernation appear to lie in the zonal properties of seasonal changes in air temperature. In the course of hibernation, the soil temperature declines gradually at a rate approaching 1 °C per month.
Four key factors determining the ecological niche of the Himalayan marmot, Marmota himalayana Hodgson (1841), in the Central Himalayas (Nepal) have been identified. These are elevation above sea level, temperature, the presence of accumulative formations, and feeding conditions. The Himalayan marmot ecologically differs from all other marmots of the world fauna, and the main difference is that the lower boundary of its range lies very high—3000 m above sea level.
The ecological aspects of the concept of the biological signal field proposed by Naumov (1971) are discussed using the example of mammals. From the works published by Naumov, it might be assumed that the biological signal field is a specific and very powerful ecological factor that performs several functions. It organizes the spatial activity of animals, transmits information about the population spatial structure and the using of a territory over a number of generations, and organizes and supports the stability of the ecological system structure. While on the subject of the empirical importance of the problem, it is worth noting that the anthropogenous factors not only modify the substance–energy condition of the habitats but also change the biological signal field as an informational system. By destroying or deforming their signs, we deprive animals of the base information that allows them to use a territory with minimum temporal energetic costs. We also don’t know what the possible consequences of the human intervention in the nformation processes of animal populations are.
The study was based on long-term field observations of individually marked pikas. Data were collected from 1991 to 1993. Observations on the Altai pika were carried out in the Sajano-Shushenskii Biosphere Reserve (West Sajan, Russian Federation). The animals were live-trapped, sexed and marked with colored eartags. Average distance between the centres of activity of nearest neighbor male-female combinations was approximately three times less than distances separating male-male or female-female combinations. There is a supposition that formation of heterosexual pairs permits more complete use of protective resources, while maintaining a certain (about 30m) distance from the centers of activity of nearest neighbors of the same sex. Adult males and females on the whole are territorially conservative. They are only inclined to shift their activity centres in late summer to early autumn. Two levels of activity centre shift are defined: (1) shift whithin an individual home range, of less than 15 m; and (2) moving to colonize a vacated neighbor range, over 20 m. In the latter case replacement of individual ranges is usually observed, i.e. the boundary of the former occupant. It is supposed that the territory of pika settlement serves its inhabitants as an information matrix. Pattern of territory use by animals results from interpreting information, kept in the form of landscape specificity and traces of vital activity of previous generations. In late summer, activity patterns and area of individual range begins to decrease, and individual and sex differences are minimized. The area of individual home ranges of adult males and females are inversely correlated with the density of the population. But in the case of males, the correlation is higher than for females.