El matemático de la RUDN ha elaborado un método que permitirá estudiar la estructura de las moléculas

El matemático de la RUDN ha elaborado un método que permitirá estudiar la estructura de las moléculas

El científico del Laboratorio de Matemáticas de la RUDN obtuvo nuevos resultados en la investigación del problema inverso para las ecuaciones acopladas de Schrödinger. El resultado obtenido será útil para la descripción de la interacción de los rayos de láser y partículas con las moléculas y para el análisis de estructuras moleculares.

El científico del Laboratorio de Matemáticas de la RUDN obtuvo nuevos resultados en la investigación del problema inverso para las ecuaciones acopladas de Schrödinger. El resultado obtenido será útil para la descripción de la interacción de los rayos de láser y partículas con las moléculas y para el análisis de estructuras moleculares.

Normalmente, el problema matemático es una ecuación a resolver. En la física a menudo es al revés: los científicos ya saben la solución, es decir, los resultados de la medición, pero las propiedades del sistema físico todavía son desconocidas, es decir, las ecuaciones que describen dicho sistema. Es lo que se llama problema inverso o problema de búsqueda de la ecuación según su solución. 

En la física cuántica a menudo se necesita resolver diferentes tipos del problema inverso de dispersión. Por ejemplo, para restaurar la estructura de una molécula según el cuadro de la dispersión de las partículas, por las cuales la bombardean. En este caso ha de resolver la ecuación de Schrödinger para varias partículas, pero este problema no tiene solución general. 

Por lo tanto, es necesario averiguar con qué mediciones se puede recuperar el potencial de manera única y crear un algoritmo mediante el cual se puede restaurar el potencial numéricamente. Además, si el método numérico ya está creado, es necesario entender si no se difiere, en otras palabras, si funciona correctamente. Para la solución de dichos problemas se necesitan teoremas que evalúan el potencial mediante las mediciones. 

CITA pregunta 1: “¿Podría contar sobre las posibles aplicaciones de sus resultados para los métodos numéricos?”. 

Masahiro Yamamoto de la RUDN junto con Fanfang Dou de China obtuvieron precisamente estos teoremas. En su trabajo fue estudiado el caso de ecuaciones acopladas de Schrödinger que no se habían estudiado anteriormente. En los artículos anteriores fueron estudiados problemas inversos para las ecuaciones ordinarias y no lineales de Schrödinger. No obstante, las ecuaciones acopladas de Schrödinger son de la clase de problemas relativamente “joven”. Por lo tanto, su problema directo se ha estudiado, pero el inverso – aún no. 

CITA pregunta 2: “¿Cómo se diferencian las aplicaciones prácticas de ecuaciones acopladas no lineales de Schrödinger y las aplicaciones con los resultados obtenidos por ustedes? ¿Se puede esperar que su resultado sea generalizado para las ecuaciones acopladas no lineales?”

Las ecuaciones acopladas de Schrödinger es un sistema de dos ecuaciones de Schrödinger que tienen miembros adicionales responsables por la interacción de radiación y moléculas. Se necesitan para la descripción de los experimentos recientes con el impacto de rayo de láser sobre los vínculos intermoleculares en los iones de deuterio y oxígeno. Masahiro Yamamoto ha obtenido nuevos teoremas que permiten evaluar mediante las mediciones los potenciales no perturbados por la radiación. 

Su nuevo trabajo permitirá aplicar los métodos numéricos a los modelos de transición de muchos fotones, lo que permitirá modelar el cambio de propiedades de enlaces químicos bajo el impacto de campos de láser intensivos. Lo más probable es que en el futuro tendrán lugar las aplicaciones de estos resultados para diferentes investigaciones en nanofotónica y física mesoscópica, puesto que la cuestión sobre el control y neutralización de la disociación de las moléculas mediante la radicación de láser preocupa a los físicos ya desde hace mucho tiempo. 

El artículo fue publicado en Inverse Problems.

Ciencia
13 Apr
Los químicos han determinado la composición de los aceites de plantas medicinales populares

Un equipo ruso-vietnamita de químicos de la Universidad de la Amistad de los Pueblos de Rusia (RUDN), la Universidad Nacional de Belgorod, la Universidad Ton Dak Thanh y la Academia de Ciencias y Tecnología de Vietnam estudió por primera vez la composición de los aceites de dos plantas con flores del géneroThladianthapopular en la medicina tradicional china. Se demostró por primera vez que las semillas de ambas plantas contienen alrededor del 40% de aceites con ácidos grasos poliinsaturados.

Ciencia
12 Apr
Matemático de RUDN University encontró un enfoque adecuado para la teoría de juegos cooperativos para los ingenieros y economistas

Un matemático de RUDN University desarrolló un método matricial para representar funciones de conjuntos. Este enfoque es más claro desde el punto de vista computacional, hace que los cálculos sean más sencillos y fáciles de probar. Los resultados se pueden aplicar, en particular, en la teoría de juegos cooperativos.

Ciencia
02 Apr
Biólogo de RUDN University descubrió que el ajo y el selenio aumentan la resistencia al estrés de los peces carpas

Un biólogo de RUDN University ha demostrado que las nanopartículas de selenio y el extracto de ajo son suplementos efectivos en la alimentación de la carpa herbívora para su cultivo industrial. Ayudan a reducir los efectos negativos del estrés en la salud de los peces.